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ABSTRACT

Real-time, in-situ characterization of hot-wire
chemical vapor deposition (HWCVD) growth of
hydrogenated silicon (Si:H) thin films offers unique
insight into the properties of the materials and
mechanisms of their growth.  We have used in-situ
spectroscopic ellipsometry to characterize Si:H
crystallinity as a function of film thickness and
deposition conditions.  We find that the transition from
amorphous to microcrystalline growth is a strong
function of film thickness and hydrogen dilution, and a
weak function of substrate temperature.  We have
expressed this information in terms of a color-coded
phase-space map of the amorphous to microcrystalline
transition in HWCVD growth on crystalline Si
substrates.

1. Introduction
In-situ real-time spectroscopic ellipsometry (RTSE) is

valuable new technique for characterization of material
properties in real time during film growth.  We have
applied this technique to study the properties of
amorphous (a-Si:H) and microcrystalline (µc-Si:H)
hydrogenated silicon grown using HWCVD.  We report
here on the results of this work over the past 15 months.

RTSE measures the optical properties of the growing
film as rapidly as 5 times per second.  The primary
parameters characterized are the film thickness,
dielectric function, and surface roughness.   The
dielectric function provides a sensitive measure of the
degree of crystallinity of the film.   Film thickness vs.
time provides an accurate measure of the growth rate.
Changes in the surface roughness provide indications of
transitions from one mode of growth to another [1].

2. Experimental Details
HWCVD deposition of Si:H films was performed

using a single 0.5-mm-diameter W filament operated at a
60-Hz ac filament current of 16 amps (~2200°C).  The
filament is wrapped in a 4-mm-diameter helix and
mounted 4 cm from the substrates.  The silane flow was
fixed to 6 sccm with a silane partial pressure of ~3
mTorr.  The two main deposition parameters varied in
this study were the substrate heater temperature (TH), at
either 250o or 500°C, and hydrogen dilution ratio
(R=SiH4/SiH4+H2) from 0 to 14.  All films were grown
to a thickness of about 1 um. These experiments were
carried out in the same chamber described in detail in [2]
and under similar conditions to those in [3].

RTSE measurements were performed using a J.A.
Woollam, Inc., M2000 visible and near-infrared rotating
compensator ellipsometer and Woollam software for

instrument control and data acquisition and analysis.  The
ellipsometer uses array detectors to collect spectra from 250
to 1700 nm, with an acquisition time as short as 200 ms.
For this study, spectra were collected from 255 to 1240 nm,
with an integration time of 200 to 500 ms during the
nucleation phase of growth and 1 to 5 seconds during the
later stages of growth, dependent on film deposition rates.
The angle of incidence was fixed at 70o.

The Raman scattering measurements were performed in a
180-degree backscattering configuration with a doubled
Nd:YAG laser operating at 532 nm and a single-grating
Spex 270M spectrometer with a LN2-cooled CCD array
detector. The incident laser power was 30 mW, and a
holographic notch filter was used to suppress the laser line.
Penetration depth was about 96 nm for µc-Si:H and 64 nm
for a-Si:H.

3. Analysis of RTSE Results
Ellipsometry data are expressed in terms of the amplitude

ratio Ψ and the phase angle ∆ .  These data are translated
into physical information about the sample through model-
based analysis [4].  The Fresnel equations are used to
calculate Ψt h  and ∆ th from a theoretical model of the
growing film.  These values are then compared with Ψexp

and ∆ e x p to calculate a mean-squared error (MSE).
Parameters in the model are adjusted using Levenburg-
Marquardt optimization to minimize the MSE.

Models used in this study include several layers; the
crystalline Si substrate, the native oxide on top of the
substrate, the Si:H, and a surface roughness layer.  Primary
experimental variables that are derived through analysis are
the thickness and optical properties of the Si:H and the
surface roughness.  The optical properties are expressed in
terms of the dielectric function or dielectric spectrum, which
is closely related to the electronic properties of the material.

RTSE data consist of a time series of ellipsometric
spectra.  The model is fit sequentially to each spectrum,
with the final fit parameters of one time-step providing the
starting point for fitting the next time-step.  The entire time
series of data is fit iteratively.  An initial guess for the
dielectric function of the Si:H is fit to the data to provide an
initial sequence of layer thickness values di(t).  A subset of
these thickness values is then used to calculate an optimized
dielectric function that minimizes the total MSE over this
subset.  This dielectric function is then applied to the entire
time sequence to generate an improved set of thickness
values.  These values are, in turn, used to generate a third-
generation dielectric function.  This process is repeated until
it is no longer possible to reduce the total MSE.  Additional
layers may be included in the model as necessary to
minimize the error.  The thickness at each time-step for each
layer in the model is determined through a sequential fit to
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the time-sequence data, with the only constraint on di(t)
being minimization of the MSE.

RTSE data were analyzed in two stages.  The early-
time nucleation phase was modeled using a two-layer
model, consisting of a bulk film with thickness db and a
surface-roughness layer with thickness ds, both on top of
a crystalline silicon substrate with a ~15-Å-thick native
oxide layer.  Most of the growth conditions required a
third layer to represent a secondary phase of Si:H that
started growing shortly after the nucleation phase had
coalesced.  The surface roughness layer was modeled
using a Bruggeman effective medium approximation
(EMA) of 50% void and 50% of the underlying material.
The dielectric functions of the nucleation and post-
nucleation layers were determined using the iterative
optimization method to minimize the MSE within a
selected region of growth time.  Amorphous Si:H was
modeled using a Cody-Lorentz oscillator formalism,
whereas microcrystalline Si:H was modeled using a two-
oscillator Tauc-Lorentz formalism [5].

In most of the films studied, the optical properties of
the film evolved during deposition.  Multilayer models
do not work well to analyze the data as the film grows
because of grading in the optical properties.  To analyze
the data after the initial nucleation phase, we have used a
virtual interface (VI) model.  The VI model cannot be
applied during nucleation because it assumes a slowly
varying surface roughness.  The VI model fits the data
using a 3-layer model consisting of 1) a surface
roughness layer on top of 2) a growing film of thickness
5rto, where r is the growth rate and to is the data
acquisition interval, and 3) a pseudo-substrate with a
pseudo-dielectric function <ε> calculated by directly
inverting the Ψ and ∆ data at time tn-5.  The growing film
of thickness 5rto is modeled as a 2-component
Bruggeman EMA composed of a mixture of materials
determined from the post-nucleation layer and the final
material deposited at the end of the deposition.  The
growth rate r is held constant, whereas the EMA
percentage and surface roughness thickness are fit using
regression analysis.  In general, for each film, three
distinct dielectric functions are determined
corresponding to the nucleation layer, mid-layer, and
final layer.  In the more homogeneous films, some or all
of these layers may be the same.

4. Analysis of Crystallinity
The degree of crystallinity of the films in this study

was analyzed using in-situ RTSE and ex-situ Raman
scattering.  Raman scattering provides a semi-
quantitative measure of crystallinity through the relative
amplitudes of the amorphous and microcrystalline
Raman peaks.  Ellipsometry provides information on the
degree of crystallinity from the dielectric function
derived through analysis of the RTSE data.  Whereas
Raman scattering provides an average weighted by the
intensity of the laser vs. depth, RTSE is able to provide a
qualitative map of the crystallinity vs. depth in the film.

Figure 1 presents Raman scattering spectra for the
Ts=250oC films.  The broad peak at ~460 cm-1 is correlated
with amorphous, whereas the sharp peak at ~520 cm-1 is
correlated with microcrystalline silicon [6].  Penetration

depths calculated at the 532-nm laser wavelength are 96 nm
for microcrystalline and 64 nm for amorphous silicon.
Because the degree of crystallinity varies with depth in the
film, it is difficult to calculate an accurate ratio of
amorphous to microcrystalline material based on the Raman
scattering peak heights.  The Raman data do provide a
qualitative measure of the relative degree of crystallinity
within the top 0.1 µm of these 1.0-µm-thick samples.  In
addition, the Raman intensity scales with the degree of
crystallinity, with small-grained µc-Si:H having a lower
Raman intensity than large-grained µc-Si:H, and crystalline
Si having a much higher intensity than any of the µc-Si:H
samples measured in this study.  We attribute this to final-
state lifetime effects on the Raman scattering cross-section.
Thus, the amplitude of the 520 cm-1 peak in the Raman
spectrum is an indication of the degree of crystallinity of the
upper layer of the µc-Si:H films.

It is clear in Fig. 1 that the R=0 and R=3 films are purely
a-Si:H near the surface, whereas the R=4 film has a slight
degree of crystallinity.  The R=6, 10, and 14 films are all
predominantly µc-Si:H near the surface, with varying peak
heights.  This likely correlates with grain size in these µc-
Si:H films.

Figure 2 illustrates how the real (ε1) and imaginary (ε2)
parts of the dielectric function evolve with the degree of
crystallinity of the film.  Figure 2 (a) shows the real part of
the dielectric function ε1, and Fig. 2 (b) shows the imaginary
part of the dielectric function ε2.  ε1 relates to the index of
refraction n, whereas ε2 relates to the extinction coefficient
k.  The curves in yellow are for pure a-Si:H, the red curves
show ε1 and ε2 for mixed a-Si:H and µc-Si:H, and the black
curves are for pure µc-Si:H.  As the film evolves from a-
Si:H to µc-Si:H, both the amplitude and the peak energy of
ε1 and ε2 increase.  The amplitude of ε1 and ε2 are also
influenced by the presence of voids in the material.  Because
of this ambiguity in tracking the crystallinity using the
amplitude of the dielectric function, we have focused on the

Figure 1.  Raman scattering spectra for samples grown at
TH=250oC.
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peak energies for ε1 and ε2.  By summing the peak
energy of the real and imaginary parts of the dielectric
function, we have a numerical scale that ranges from 6.1
eV to 7.3 eV, corresponding to pure a-Si:H at 6.1 eV and
pure µc-Si:H at 7.3 eV.  This scale is expressed in terms
of color in the color bar at the center of Fig. 2, with
yellow corresponding to the lowest energy sum and
black corresponding to the highest energy sum.

Figure 3 is a representation of the degree of
crystallinity versus depth based on the dielectric
functions measured in-situ using RTSE.   Note that films
grown at Ts=250oC have a higher hydrogen content,
which shifts the peak energies of the dielectric function
higher.  Thus, even completely amorphous films at this
temperature will have a slight orange shading, instead of
being completely yellow.

As described in the section on analysis, most films
required three distinct dielectric functions for analysis of
the in-situ RTSE data.  This consisted of one function for
the nucleation phase, one for the intermediate phase, and
one for the end phase.  Nucleation was described as a
single or double layer, with the nucleation layer
thickness allowed to vary as needed to fit the RTSE data.
The remainder of the film was modeled as an EMA
mixture of the intermediate and final dielectric functions.
Thus, the EMA % value provides a continuous scale
between the intermediate and final endpoints.  Although
this is only a semiquantitative approach to describing the
crystallinity versus thickness, we believe that the results
accurately describe how the relative degree of
crystallinity evolves with substrate temperature,
hydrogen dilution, and film thickness.

Figure 3 (a) presents the evolution of crystallinity with
thickness and hydrogen dilution for Ts=250oC.  The
numbers across the top give the ratio of the amplitude of

the 520 cm-1 peak in the Raman spectrum to the highest
intensity 520 cm-1 peak measured in this study.  This
number is roughly interpreted as the relative degree of
crystallinity within the uppermost 1000 Å of the film.  The
homogeneous orange color for the R=0 and R=3 films in
Fig. 3 (a) show that the R=0 and R=3 films are completely
amorphous.  This is confirmed by the Raman results.  The
R=4 film appears to be completely amorphous in the RTSE
data, yet Raman indicates a small component of
microcrystalline material at the surface.  The R=6 film
nucleates as a-Si:H, and grows primarily as µc-Si:H.  The
R=10 film nucleates as a material that appears to be midway
between a-Si:H and µc-Si:H, whereas the bulk of its growth
is microcrystalline.  Finally, the R=14 film is µc-Si:H at
nucleation and throughout its growth.

Trends are very similar for the Ts=500oC films shown in
Fig. 3 (b).  The R=0 and R=3 films are completely
amorphous.  Although the R=4 film nucleates as a-Si:H, it
has a significantly greater µc-Si:H component than the
Ts=250oC R=4 film.  This is confirmed by the Raman
results.  The R=6 film nucleates as a-Si:H and becomes
increasingly crystalline as thickness increases.  The R=10
and R=14 films show somewhat distinct behavior.  The
R=10 film nucleates as mixed phase, transitions to a more-
crystalline mixed phase, and then becomes less crystalline
as it increases in thickness.  The R=14 film nucleates as µc-
Si:H and appears to make a transition to mixed a-Si:H and
µc-Si:H after the nucleation phase.  After that, the film
becomes increasingly crystalline as it grows.  These two
films present a somewhat puzzling result.  We believe it
may be related to the template effect of the crystalline
substrate.  In the nucleation phase, the growth may be
epitaxial, producing highly crystalline material.  Once the
film reaches a critical thickness, the epitaxial registry is lost
and the film makes a transition to mixed amorphous-
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microcrystalline growth.  The results are still somewhat
puzzling because of the different evolution of the two
films after nucleation.  We plan to reproduce these
onditions to clarify this issue in the future.

4.  Discussion and Conclusions
Based on Fig. 3, we can draw some conclusions about

the transition from a-Si:H to µc-Si:H growth for
HWCVD deposition of Si:H on crystalline silicon
substrates.  For both deposition temperatures studied, it
is clear that the transition is a gradual one, both in
dilution and film thickness.  For TH=250oC, mixed-phase
growth emerges near 1000-Å thickness at R=6.  This
transition occurs earlier for the TH=500oC conditions.  At
the higher temperature, mixed-phase growth is first seen
near 2000 – 4000-Å thickness at R=4.  An important
point to note is that the transition is a function of both
dilution and film thickness.  If we were only to consider
the Raman scattering results, we would conclude that the
transition occurs at R=4 for both growth temperatures; in
this case, we can see that the thickness of the film has a
dramatic effect on the degree of crystallinity.

A second important point is that there is a broad range
of conditions where the growth is mixed-phase.  The
films are not predominantly µc-Si:H until R=14 or
beyond.  In the transition region, the degree of
crystallinity is a strong function of film thickness.  This
information should be valuable input for thin-film Si:H
device growth.  Our future plans include studies of
HWCVD growth on substrates designed to mimic those
used for device growth.
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